Рейтинг@Mail.ru
Инструменты финансового и инвестиционного анализа

Вернуться на методику инвестиционный анализ

Чистая текущая стоимость NPV

Чистая текущая стоимость - сумма текущих стоимостей всех спрогнозированных, с учетом ставки дисконтирования, денежных потоков.

Метод чистой текущей стоимости (NPV) состоит в следующем.
1. Определяется текущая стоимость затрат (Io), т.е. решается вопрос, сколько инвестиций нужно зарезервировать для проекта.
2. Рассчитывается текущая стоимость будуùих денежных поступлений от проекта, для чего доходы за каждый год CF (кеш-флоу) приводятся к текущей дате.

Результаты расчетов показывают, сколько средств нужно было бы вложить сейчас для получения запланированных доходов, если бы ставка доходов была равна барьерной ставке (для инвестора ставке процента в банке, в ПИФе и т.д., для предприятия цене совокупного капитала или через риски). Подытожив текущую стоимость доходов за все годы, получим общую текущую стоимость доходов от проекта (PV):

Формула Текущая стоимость доходов от проекта

3. Текущая стоимость инвестиционных затрат (Io) сравнивается с текущей стоимостью доходов (PV). Разность между ними составляет чистую текущую стоимость доходов (NPV):

NPV = PV - Io;

NPV показывает чистые доходы или чистые убытки инвестора от помещения денег в проект по сравнению с хранением денег в банке. Если NPV > 0, то можно считать, что инвестиция приумножит богатство предприятия и инвестицию следует осуществлять. При NPV < 0, то значит доходы от предложенной инвестиции недостаточно высоки, чтобы компенсировать риск, присущий данному проекту (или с точки зрения цены капитала не хватит денег на выплату дивидендов и процентов по кредитам) и инвестиционное предложение должно быть отклонено.

Чистая текущая стоимость (NPV) это один из основных показателей используемых при инвестиционном анализе, но он имеет несколько недостатков и не может быть единственным средством оценки инвестиции. NPV определяет абсолютную величину отдачи от инвестиции, и, скорее всего, чем больше инвестиция, тем больше чистая текущая стоимость. Отсюда, сравнение нескольких инвестиций разного размера с помощью этого показателя невозможно. Кроме этого, NPV не определяет период, через который инвестиция окупится.

Если капитальные вложения, связанные с предстоящей реализацией проекта, осуществляют в несколько этапов (интервалов), то расчет показателя NPV производят по следующей формуле:

Формула NPV чистая текущая стоимость , где

NPV - чистая текущая стоимость;
CFt - приток денежных средств в период t;
It - сумма инвестиций (затраты) в t-ом периоде;
r - барьерная ставка (ставка дисконтирования);
n - суммарное число периодов (интервалов, шагов) t = 1, 2, ..., n (или время действия инвестиции).

Обычно для CFt значение t располагоется в пределах от 1 до n; в случае когда CFо > 0 относят к затратным инвестициям (пример: средства выделенные на экологическую программу).

Определяется: как сумма текущих стоимостей всех спрогнозированных, с учетом барьерной ставки (ставки дисконтирования), денежных потоков.

Характеризует: эффективность инвестиции в абсолютных значениях, в текущей стоимости.

Синонимы: чистый приведенный эффект, чистый дисконтированный доход, Net Present Value.

Акроним: NPV

Недостатки: не учитывает размер инвестиции, не учитывается уровень реинвестиций.

Критерий приемлемости: NPV >= 0 (чем больше, тем лучше)

Условия сравнения: для корректного сравнения двух инвестиций они должны иметь одинаковый размер инвестиционных затрат.

Пример №1. Расчет чистой текущей стоимости.
Размер инвестиции - 115000$.
Доходы от инвестиций в первом году: 32000$;
        во втором году: 41000$;
        в третьем году: 43750$;
        в четвертом году: 38250$.
Размер барьерной ставки - 9,2%

n = 4.

Пересчитаем денежные потоки в вид текущих стоимостей:
PV1 = 32000 / (1 + 0,092) = 29304,03$
PV2 = 41000 / (1 + 0,092)2 = 34382,59$
PV3 = 43750 / (1 + 0,092)3 = 33597,75$
PV4 = 38250 / (1 + 0,092)4 = 26899,29$

NPV = (29304,03 + 34382,59 + 33597,75 + 26899,29) - 115000 = 9183,66$

Ответ: чистая текущая стоимость равна 9183,66$.

Формула для расчета показателя NPV (чистой текущей стоимости) с учетом переменной барьерной ставки:

Формула NPV чистая текущая стоимость

NPV - чистая текущая стоимость;
CFt - приток (или отток) денежных средств в период t;
It - сумма инвестиций (затраты) в t-ом периоде;
ri - барьерная ставка (ставка дисконтирования), доли единицы (при практических расчетах вместо (1+r)t применяют (1+r0)*(1+r1)*...*(1+rt), т.к. барьерная ставка может сильно меняться из-за инфляции и других составляющих);

n - суммарное число периодов (интервалов, шагов) t = 1, 2, ..., n (обычно нулевой период подразумевает затраты произведенные для реализации инвестиции и количество периодов не увеличивается).

Пример №2. NPV при переменной барьерной ставке.
Размер инвестиции - $12800.
Доходы от инвестиций в первом году: $7360;
во втором году: $5185;
в третьем году: $6270.
Размер барьерной ставки - 11,4% в первом году;
10,7% во втором году;
9,5% в третьем году.
Определите значение чистой текущей стоимости для инвестиционного проекта.

n =3.
Пересчитаем денежные потоки в вид текущих стоимостей:
PV1 = 7360 / (1 + 0,114) = $6066,82
PV2 = 5185 / (1 + 0,114)/(1 + 0,107) = $4204,52
PV3 = 6270 / (1 + 0,114)/(1 + 0,107)/(1 + 0,095) = $4643,23

NPV = (6066,82 + 4204,52 + 4643,23) - 12800 = $2654,57

Ответ: чистая текущая стоимость равна $2654,57.

Правило, согласно которому, из двух проектов, с одинаковыми затратами, выбирается проект с большим NPV действует не всегда. Проект с меньшим NPV, но с коротким сроком окупаемости может быть выгоднее проекта с большим NPV.

Пример №3. Сравнение двух проектов.
Стоимость инвестиции для обоих проектов равна 100 рублям.
Первый проект генерирует прибыль равную 130 рублям по окончании 1 года, а второй 140 рублей через 5 лет.
Для простоты расчетов считаем барьерные ставки равными нулю.
NPV1 = 130 - 100 = 30 руб.
NPV2 = 140 - 100 = 40 руб.

Но при этом годовая доходность, рассчитанная по модели IRR, будет у первого проекта равна 30%, а у второго 6,970%. Ясно, что будет принят первый инвестиционный проект, несмотря на меньший NPV.

Для более точного определения чистой текущей стоимости денежных потоков применяют показатель "модифицированная чистая текущая стоимость (MNPV)".

Пример №4. Анализ чувствительности.
Размер инвестиции - 12800$.
Доходы от инвестиций в первом году: $7360;
во втором году: $5185;
в третьем году: $6270.
Размер барьерной ставки - 11,4% в первом году;
10,7% во втором году;
9,5% в третьем году.
Рассчитайте, как повлияет на значение чистой текущей стоимости увеличение доходов от инвестиции на 30%?

Исходное значение чистой текущей стоимости было рассчитано в примере №2 и равна NPVисх = 2654,57.

Пересчитаем денежные потоки в вид текущих стоимостей с учетом данных анализа чувствительности:
PV1 ач = (1 + 0,3) * 7360 / (1 + 0,114) = 1,3 * 6066,82 = $7886,866
PV2 ач = (1 + 0,3) * 5185 / (1 + 0,114)/(1 + 0,107) = 1,3 * 4204,52 = $5465,876
PV3 ач = (1 + 0,3) * 6270 / (1 + 0,114)/(1 + 0,107)/(1 + 0,095) = 1,3 * 4643,23 = $6036,199

Определим изменение чистой текущей стоимости: (NPVач - NPVисх) / NPVисх * 100% =
= (6036,199 - 2654,57) / 2654,57 * 100% = 127,39%.
Ответ. Увеличение доходов от инвестиции на 30% привело к увеличению чистой текущей стоимости на 127,39%.

Примечание. Дисконтирование денежных потоков при меняющейся во времени барьерной ставке (норме дисконта) соответствует "Методическим указаниям № ВК 477 ..." п.6.11 (стр. 140).


Главная Методики финансового и инвестиционного анализа Инвестиционный анализ Чистая текущая стоимость

Copyright  © 2003-2011 by Altair Software Company. Потенциальным спонсорам программ и проекта.

 

Финансовый анализ: финансовая математика, анализ хозяйственной деятельности предприятия, факторный анализ, инвестиционный проект.Методики финансового анализа: облигации, вексель, аннуитет, сложный процент, рентабельность, ликвидность, инвестиции, платежеспособность, леверидж.Программы финансового анализа серии Альтаир: Финансовый калькулятор, Анализ финансовой отчетности, Оптимизация структуры капитала.Задачи по экономике, по финансам, по инвестициям.Электронная экономическая библиотека, экономическая теория, книги по экономике, литература.Статьи о финансовом анализе, статьи по экономике.Финансовый  калькулятор On-line.FAQ о сайте Инструменты финансового анализа и программах Альтаир.

Яндекс.Метрика

Рейтинг@Mail.ru

Добавить сайт "Инструменты финансового и инвестиционного анализа" в Избранное/Закладки